diketahuimatriks p 1 3 1 dan matriks yaitu 45/20 cerminan dari matriks PQ adalah jika kita maka konsep atau rumus yang digunakan nah matriks p = 1 2 3 1 x matriks kimia yaitu 5 perkalian matriks matriks pertama dibagi baris matriks kedua dibagi kolom maka = 1 * 4 + 2 * 2 lalu 1 kaliditambah 2 * 03 * 4 ditambah 1 * 2 Lalu 3 * 5 + 1 dikali nol maka = 1815 maka matriks PQ 8 5 14 15 kita mencari determinan dari matriks PQ misalkan matriks= abcd maka determinan dari matriks m yaitu diagonal Bagikan Jika diketahui matriks \left (\begin {array} {cc}p+2 & 2 \\ 3 & 5\end {array}\right)+\left (\begin {array} {cc}p & 6 \\ 6 & q+3\end {array}\right)=\left (\begin {array} {ll}4 & 8 \\ 9 & 5\end {array}\right) ( p+2 3 2 5)+( p 6 6 q +3) =( 4 9 8 5), tentukan nilai p p dan q q ! Diketahuimatriks P = Q = , jika nilai deteminannya adalah 4, Tentukan nilai -2x + y - z = 0. PEMBAHASAN : Menentukan matriks PQ. Diketahui determinannya = 4, maka: 8(-2x+y+z)-0=4 Maka-2x+y+z = 0,5 Vay Tiền Nhanh. Kelas 11 SMAMatriksKesamaan Dua MatriksKesamaan Dua MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0044Diketahui kesamaan matriks berikut. [5 a 3 b 2 c]=[5 2 3 ...0404Diketahui matriks A=a+2 1-3 b -1 -6, B=2 a b-3 -...0106Diketahui matriks 5 a 3 b 2 c=5 2 3 2 a 2 a...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videokita memiliki pertanyaan matriks pada pertemuan kali ini kita akan membahas mengenai konsep dari matriks transpose dimana konsep dari matriks transpose adalah bisa kita memiliki matriks A dengan elemen abcd Maka kalau ditransfer kan Ah yang ada pangkatnya maka akan dituliskan jadi abcd nah disini ketikan kit mentransferkan 1 matriks itu sebenarnya kita mau nukar letak dari elemennya berdasarkan yang tadinya berdasarkan baris dan kolom menjadi kolom dan baris kita balik makanan di sini kalau kita cara mudahnya adalah kalau di sini kita bilang abcd dari a kita ke kanan belinya kalau di sini kita bilangnya ah di jadi dari a langsung ke bawah Ke Kanan Ke Kanan yang satunya lagi adalah bawah ke bawah pada soal kali ini kita memiliki dua buah matriks yaitu matriks P dan matriks dimana keduanya adalah matriks 2 * 2 dan di sini kita mendapatkan clue kalau nilai p transpose = q transpose maka disini saya Tuliskan transpose = Q maka kita bisa mentransfusikan dari matriks P terlebih dahulu jadi ingat disini 25 ke kanan nih lalu kita tukar jadi 2577 ke bawah ya kalau yang satunya adalah 2 x + y 2 x + y Lalu 3 dan 737 Nah sekarang kita sudah menyamakan ke dua buah matriks ini dan kita dapatkan kalau di sini nilainya 2 dan di sini nilai 2 di sini nyalanya tuju Dan disinilah 7 ini karena matriksnya disini kita anggap sebagai identik Maka kalau di sini nilainya 5 di sini seharusnya nilainya 5 juga kalau di sini nilainya 3 maka di sini nilainya seharusnya 3 juga maka kita bisa mendapatkan dua persamaan di mana yang pertama kita dapatkan dari yang 5 = x + y 5 = x + y dan yang kedua adalah dari x min y = 3 ya Karena posisinya sama-sama di sini Nah maka disini kita dapat Atur ulang agar lebih mudah untuk di eliminasi ya makan di sini kita ada x + y = 52 dan X min y = 3 nih sebelah tanpa perlu dieliminasi kita dapat mencari ini dengan metode substitusi juga tapi saya akan menggunakan metode eliminasi di mana Di sini saya akan kurangkan menjadi y dikurangi minus y menjadi 2 y + 5 dikurangi 3 jadi 2 ya, maka nilainya adalah 1 dan kita masukkan ke antara persamaan 1/2 terserah akan masukkan ke persamaan 15 = x + y ya jadinya kita ganti dengan 15 = x + 1 maka nilai x nya kita dapatkan 51 jadi 4 ini kita sudah memiliki nilai dan juga nilai sekarang Yang perlu kita lakukan adalah mau masukkan ke dalam pertanyaan yang sesungguhnya nih di sini ada x kuadrat ditambah y kuadrat maka kita tinggal kuadrat kan nilai x kuadrat kan nilai kita dapatkan 16 + 1 menjadi hasilnya adalah 17 dan jawabannya gratis sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAMatriksInvers Matriks ordo 2x2Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1 adalah invers matrik, P dan Q^1 adalah invers matriks Q, maka tentukan determinan matriks P^-1 Q^-1.Invers Matriks ordo 2x2MatriksALJABARMatematikaRekomendasi video solusi lainnya0319Diketahui matriks P=2 5 1 3 dan Q=5 4 1 1. Jika P^-1...0322Invers matriks A = [1 2 3 4] adalah A^-1= ....0245Diketahui matriks A=7 2 3 1 dan B=1 -2 -3 7. Tunjukka...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...Teks videojika melihat hal seperti ini maka cara mengerjakannya adalah menggunakan konsep determinan dan juga invers dan determinan dari matriks a b c d adalah a d min b c dari matriks a b c d adalah 1 per determinannya dikali dengan a&d di tukar tempat B dan C dikali negatif Kita punya persamaan teh invers G invers maka c invers adalah 1 per 2 kali 3 yaitu kurangi 1 dikali 5 yaitu 5 dikali dengan 2 dan 3 di tukar tempat 1 dan 5 x negatif kemudian dikali dengan Q invers invers adalah 1 per 5 kali 1 yaitu 5 dikurangi 4 dikali 1 yaitu 4 dikali dengan 1 dan 5 di tukar tempat 1 dan Min 4 xSama dengan 1 per 6 dikurangi 5 adalah 1 kali 3 min 1 Min 52 kemudian dikalikan dengan 1 per 11 min 1 nah akan menjadi 3 min 1 Min 52 X dengan 1 - 1 - 45 jika matriks 2 * 2 * matriks X 2 akan menjadi matriks 2 * 2 dengan elemen seperti ini ya. Nah kita akan menggunakan perkalian matriks untuk menyelesaikan ini = 3 x 1 adalah 3 plus dengan min 5 x min 1 adalah 5 kemudian 3 x min 4 adalah 12 kemudian ditambah dengan min 5 x 5 adalah minus 25 selanjutnya min 1 dikali 1 adalah1 ditambah dengan 2 x min 1 adalah min 2 kemudian min 1 x min 4 adalah 4 selanjutnya ditambah adalah 10 maka akan menjadi 8 - 37 1 dikurangi 2 adalah minus 3 dan 14 Nah kita akan mencari determinan dari matriks ini determinannya adalah 8 dikali 14 dikurangi dengan min 3 dikali minus 3780 X 14 adalah dikurangi dengan 111 maka determinan nya adalah 1. Jadi determinan dari matriks A invers dikali dengan matriks Q invers adalah 1 sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Kelas 11 SMAMatriksOperasi Pada MatriksDiketahui matriks P = 2 1 -5 3 dan fungsi fx=x^2-3x. Jika fP = -2a+b 3a-7b -10 -5, nilai a^2-b^2 yang memenuhi adalah....Operasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videojika melihat soal seperti ini maka cara penyelesaiannya adalah di sini sp-nya kita harus definisikan dulu karena FX yaitu = x pangkat 2 dikurang 3 x maka jika ada f dari P P berarti hp-nya dikuadratkan dikurangi 3 dikali P kita operasikan dulu matik sebaiknya sesuai dengan persamaan dari fungsi f p dimana P kuadrat atau PH Life itu bukan semua elemen pr-nya dikuadratkan ya Abi matriks P dikalikan dengan matriks P nanti kita bisa Tuliskan Di sini kayaknya adalah 21 - 53 dikalikan dengan bentuk yang sama tentunya dengan operasi baris kali kolom 21 Min 5 3dikurangi dengan 3 dikalikan dengan matriks B kita tulis lagi 21 - 53 harus sama dengan di sini kita yang ada variabelnya saja yang cuma konstanta nya doang itu tidak akan berpengaruh terhadap hasil perhitungan kita ataupun apa yang ingin dicari berarti disini kita Tuliskan min 2 a + b kemudian di sini 3 A min 7 b tanpa ini nggak usah dicari ya Begitu pun dengan operasi yang di kiri kita tinggal cari elemen-elemen pada baris pertama kolom pertama dan baris pertama kolom kedua kita akan dapatkan di sini baru sekali kolam ingat ya21 dengan 2 x min 52 dikali 2 ditambah 1 dikali min 5 kemudian 21 ditambahkan dengan 1 nya * 3 ini dikurangi dengan tiganya Kita masukin ke dalam distributif kan berarti ini jadi 6 jadi 3 harus sama dengan bentuk yang di kanan tidak usah kita apa-apa dulu min 2 a + b dan yang ini adalah 3 A min 7 b kita operasikan bentuknya maka kita akan dapatkan ini 4 dikurang dengan 5 berarti jadi min 12 + 3 jadi 5 dikurangi dengan disini 6 disini 3 sama dengan ruas kanan belum kita apain ya Min dari 2 a tambah b disini 3 A min 7 b luas yang kini kita Sederhanakan lagi berarti min 1 dikurang 6 ini jadi min 75 dikurang 3 itu = 2 sama dengan ruas kanan yang kanan berarti jadi yang ini kita distributif kan berarti jadi min 2 a dikurang dengan b yang ini 3 A min 7 b dari kesamaan bentuk matriks ini berarti yang pertama Min 700 = min 2 a dikurang B Kemudian dari yang keduanya 2 = 3 a dikurang 7 b dari sini kita harus eliminasi atau substitusi boleh ya Pak saya akan eliminasi ini penyebut koefisien wa-nya kita sama kan berarti ini dikali 3 dikali 2 yang atas menjadi Min 21 = min 6 a dikurang 3 b yang bawah ini sama dengan 4 = 6 a dikurangi 14 B untuk menghilangkan nanya mengeliminasi kita harus menjumlahkan bentuk ini karena tandanya berlawanan ya ini jadi min 17 = min 3 b ditambah min 14 B Min 17 B dapatkan di nya = 1 jika BC = 1 kita substitusikan nilainya kebersamaan yang pertama ataupun yang kedua misalkan kita substitusikan persamaan yang pertama berarti min 7 = min 2 dikali a dikurang dengan d nya adalah 1 Kita pindah ruas kanan yang satunya ke kiri min 7 ditambah 1 jadi min 6 = min 2 A dan kita dapatkan nanya = min 6 dibagi min 2 itu 3 sehingga jika ditanyakan a kuadrat dikurangi dengan kuadrat maka hasilnya adalah 3 kuadrat dikurangi dengan 1 kuadrat 9 dikurangi 1 hasilnya 8 sehingga jawaban yang tepat adalah pilihan yang B sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

jika diketahui matriks p 2 2 3 5